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Abstract: One of the most important features of the modern machining system in an
“unmanned” factory is to change tools that have been subjected to wear and damage. An
integrated system composed of multi-sensors, signal processing device and intelligent
decision making plans is a necessary requirement for automatic manufacturing process.
An intelligent tool wear monitoring system for milling operation will be introduced in
this report. The system is equipped with four kinds of sensors, signal transforming and
collecting apparatus and microcomputer. A unique ANN (artificial neural network) driven
fuzzy pattern recognition algorithm has been developed from this research. It can fuse the
information from multiple sensors and has strong learning and noise suppression ability.
This lead to successful tool wear classification under a range of machining conditions.

Key Words: Condition monitoring; feature extraction; fuzzy pattern recognition; neural
network; sensor fusion; tool wear classification.

1. Introduction: Metal cutting operation compounds a large percentage of the
manufacturing activity. One of the most important objective of metal cutting research is
to develop techniques that enable optimal utilization of machine tools, improved
production efficiency, high machining accuracy and reduced machine downtime and
tooling cost be possible. Tool condition monitoring is certainly the important monitoring
requirement of unintended machining operations. It has been estimated that the
development of methods to reliably detect the end of tool life could result in an increase
of cutting speed from 10% to 50%, a decrease in cutting time, savings in tool changing
time, and overall savings of 10 to 40% [1].

Many kind of sensing techniques have been used to monitor tool condition. An approach
was developed for in-process monitoring tool wear in milling using frequency signatures
of the cutting force [2]. The approach was based on the variations of the magnitude of
cutting force harmonics along with flank wear. Some special parameters were used for
detecting tool wear [3]. By processing the force signals, three characteristic parameters,
the derivative of force wave form, power and coefficient of auto-correlation had been
found to be relevant to tool wear. A relationship between the spindle motor current and
the tool flank wear in turning operation was developed by Y. S. Liao [4]. It was found
that the motor current increased nearly linearly from the beginning to the end of the tool's
useful life if only one material was machined. Acoustic emission (AE) has been
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recognized as a promising means for on-line tool condition monitoring. The skew and
kurtosis of the AE-RMS were related with the increase of the tool flank wear [5,6]. The
dominant frequency components of AE signal are generally below 500 kHz. In this range
the spectra amplitudes were found to increase with the accumulation of tool wear [7]. A
scheme known as time domain averaging (TDA) was applied to process AE signal for on-
line sensing of tool wear in face milling [8]. Experiment results showed that the mean
AE-RMS energy had an increasing trend with the growth for natural insert wear.
Statistical techniques were used to combine power spectrum estimates with higher-order
spectrum (HOS) estimates to extract features [9]. Those features were applied to
discriminate and classify vibration signals from new and slightly used drill bits in a drill
wear study. The amount of tool wear in face milling was related to the change of the
envelope (signal boundary) of the vibration signal [10]. Grieshaber et al [11] used
spectral density and spectral area of vibration signal to identify tool wear in face milling.

It has been widely accepted now that under varying machining conditions, the
information required to make reliable decisions on the tool wear state can hardly be
available by using single sensor information. Sensor fusion is attractive since loss of
sensitivity of one of the sensors can be compensated by other sensors. A discriminate
function technique was used to combine force signal with acoustic emission information
to monitor cutting tool condition [12]. Neural networks was proved to be suitable for
integrating information from acoustic emission and cutting force sensors to predict tool
wear in turning operation [13]. The sensor signal patterns and the tool wear states were
successfully associated. Choi et al [14] developed a neural network-based real-time tool
wear monitoring system. P.G.Li et al. [15] used fuzzy pattern recognition algorithm to
monitor drilling tool wear. The thrust and torque are selected as the features relevant to
drill wear and the relationship between these features and drill wear was found from
fuzzy manipulation.

In this study, an ANN driven fuzzy pattern recognition algorithm was developed to
accomplish multi-sensor information integration and tool wear states classification. By
imitating the thinking and judging modes of human being, the technique shows some
remarkable characteristics. Definite mathematical relations between tool wear states and
sensor information are not necessarily needed. The effects caused by experimental noise
can also be decreased greatly. The established monitoring system provided accurate and
reliable tool wear classification results over a range of cutting conditions.

2. Tool condition monitoring system: The experiments were carried out on a Cincinnati
Milacron Sabre 500 machining center. Like many other modern machine tools, it delivers
a signal that is proportional to the power consumption rating of the spindle motor (up to
6.1 volts corresponding to 100% of the full power of the motor). A KISTLER 9257B

force dynamometer was used to measure cutting forces, F,,F,,F,, in three mutually
perpendicular directions. The dynamometer has a measuring range of 5000 N in each

direction, linearity of 1%, stiffness of 350 N/um in the Z direction and 1000 N/um in the
X and Y directions and a resonant frequency of 4kHz. The acoustic emission (AE)




measuring apparatus includes an AE sensor and a signal processing device. The AE
sensor has a measuring frequency range of 100kHz - 2MHz. An analogue module
receives the input from the pre-amplifier and provides outputs of both amplified AE
analogue signals and AE-RMS signals.
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Fig.1 Tool condition monitoring sensor signals

An accelerometer was mounted in the feed direction. The sensor has a frequency response
of 5 - 33 kHz, mounted resonant frequency 50 kHz. Fig.1 shows the power consumption,
cutting force F, (in the cutting direction), vibration and acoustic emission signals
respectively. The tool wear monitoring system is composed of four types of sensors,
signal amplifying and collecting devices and the main computer, as shown in Fig.2.
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Fig.2 The tool condition monitoring system for milling operation




The dynamometer was fixed on the table of the machine with the workpiece mounted on
the top of it. The accelerometer and the AE sensor were mounted on the side of the
workpiece and the dynamometer respectively. The power consumption, vibration and
cutting force signals were collected by the computer through an A/D board at 5 kHz, 300
kHz and 30 kHz respectively. The AE signal sampling was accomplished by using the
digital oscilloscope at a frequency of 12 MHz.

3. ANN driven fuzzy pattern recognition: Tool condition monitoring is a pattern
recognition process in which the characteristics of the tool to be monitored are compared
with those of the standard models. The process is composed of the following parts:
feature extraction, determination of the membership functions, calculation of the fuzzy
distance, learning and tool wear classification.

3.1 Feature extraction: Features extracted from the time domain and frequency domain
for pattern recognition are as follows. Power consumption signal: mean value; AE-RMS
signal: mean value, skew and kutorsis; Cutting force, AE and vibration: mean value,
standard deviation and mean power in 10 frequency ranges within the working
frequencies. As an example, Fig.3 shows several features (under cutting conditionl¥) in
time and frequency domain. It can be seen that both the amplitude and the distribution
pattern can represent the development of tool wear.
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3.2 Determination of the membership functions of the features: The features of
signals can reflect the tool wear states. For the standard model (groups of inserts with
standard flank wear values), the j-th feature of the i-th model is a fuzzy set 4,.
Theoretical analysis and experimental results show that these features can be regarded as
normal distribution fuzzy sets. The membership function of the fuzzy set A4; can be

represented as:
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where a is the mean value and o is the standard deviation. In order to determine the
values of the coefficients in the formula, several groups of inserts possessing standard
wear values were used in milling operations. K groups of specimens were drawn for the j-

th feature, then for each group the mean value xj and the standard deviation o ; canbe
calculated (t=1,2,....k). So a; and b; can be set as the maximum and minimum values of

x5 and 0';. can take the mean value of af/, . For a certain group of inserts with unknown

wear value, its j-th feature can also be regarded as a normal distribution fuzzy set. It has
following the membership function:
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3.3 The approaching degree: One of the quantitative indexes that represent the fuzzy
distance between two fuzzy sets ( A and B) is known as the approaching degree. Assume
that I (X) is the fuzzy power set of a universal set X and the map, N: J(X) x I(X) —

[0,1], satisfies
(1. VA e3(X), N(4,4)=1

(). VA,Be3(X), N(4,B)= N(B,4)

(3). If A,B,C €3 (X) satisfies

|[4(x) — C(x)| 2| 4(x) — B(x)| (Vx € X) then N(4,C)< N(4,B)
so the map N is the approaching degree in I(X) and N(4, B) is called the approaching
degree of A and B. It can be calculated by using different methods. Here the inner and

outer products are used. Assume that 4,Be 3(X),so 4eB= v{A(x) AB(x):x e X} is




defined as the inner product of A and Band A® B = /\{A(x) vB(x)xeX } is defined as
the outer product of A and B. Finally, in the map N: J(X)x 3(X) — [0, 1], N(A, B) is
the approaching degree of 4 and B.

N(4,B)=(AeB)A(A®B)" 3)

3.4 The ANN driven fuzzy pattern recognition algorithm: Using the conventional
fuzzy pattern recognition technique, the fuzzy distances (such as approaching degree)
between corresponding features of the object to be recognized and the models are first
calculated, combining these distances can determine the fuzzy distance between the
object and different models. The object should be classified to one of the models that
have the shortest fuzzy distance (or highest approaching degree) with it. Because most
features have vague boundaries so using fuzzy membership function to represent their
characteristics and fuzzy distance to describe the similarity of corresponding features are
quite appropriate. Fuzzy pattern recognition techniques are thus quite reliable and robust.
They can be further improved by developing a method that can assign suitable weights to
all the features to reflect the specific influences of different features in the pattern
recognition process. For solving this problem, an advanced ANN driven fuzzy pattern
recognition algorithm is developed from this study.

Artificial neural networks (ANNs) have the ability to classify inputs. The weights
between neurons are adjusted automatically in the learning process to minimize the
difference between the desired and actual outputs. ANN can continuously classify and
also update classifications. In this study, ANN is connected with fuzzy logic technique to
establish an ANN driven fuzzy pattern recognition algorithm. It’s principle is shown in
Fig. 4.
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Fig.4 The ANN driven fuzzy pattern recognition algorithm

Here a back propagation ANN is used to carry out tool wear classification. The
approaching degree calculation results are the input of the ANN. The associated weights
can be updated as: w,(new) = w,(0old) + adx,.Herea,d, x, are learning
constant, associated error measure and input to the i-th neuron. In this updating process,
the ANN recognizes the patterns of the features corresponding to certain tool wear state.
So in practical machining process, the feature pattern can be accurately classified to that
of one of the models. In fact ANN assigns each feature a proper synthesized weight and
the output of the ANN are weighted approaching degrees. This enables the tool wear




classification process be more reliable. Fig.5 shows the calculation process of tool wear
states classification.
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Fig.5 The tool wear states classification process

3.5 Learning: Six standard tool wear values were selected as the models for the future
pattern recognition, ranging from new to severe wear where the width of the flank wear
area increased from 0 to 0.5 mm in steps of 0.1 mm. Three standard flank wear value, 0,
0.2 mm and 0.5 mm are used to represent new tool, normal tool and worn tool. For each
tool with the standard wear value, the membership functions of all its features can be
calculated and then stored in a library in the computer. As an example, Table 1 shows the
coefficients of some of the features (mean power in ten frequency ranges) of cutting force
F for three standard models under cutting condition1*, then the membership functions
of those features can be determined by using formula (1). These are called the main
membership functions

Table 1 Coefficients of the membership
A i

FRE(SII{JZFSNCY a; b Oy a i i j i i
0-02 021 073 0007 | 0529|0567 [ 0017 098 | 099 | 008
0204 0152|0215 0025 [ 0371|0342 0072 | 0723 | 095 | 0.176
0.4-0.6 0023 [ 0.055 0009 | 0163 | 0306 | 0063 | 0266 | 0367 | 0.045
0.6-08 0076 | 0083 0011 0076 | 0124 0033 | 0165 | 0233 [ 0.037
0.8-1 0043 | 0086 | 0016 | 0092 | 0146 | 0063 | 0166 | 0231 | 0.036
<12 0013 0018 0005 | 0072 0135 [0031 | 0094 0202 | 0.053
12-14 G011 | 0018 | 0.001 | 0.076 | 0105 | 0014 | 0046 | 0125 | 0.035
14-16 00T 0017 0006 | 0156 | 0216 | 0025 | 0132 | 0263 | 0.066
16-138 0012 0034 | O01T | 0078 | 0.108 | 0017 | 0033 | 0117 ] 0.035
1822 0013 0035 0009 | 0032 | 0038 | 0027 0023 | 006 ] 0017

The training process of the ANN is as the following: by using formula (2) 20 groups of
membership functions of all the features for each model can be determined. These are
called sub-membership functions. They can represent many sub-models that also have
standard tool wear values. Then using equation (3) can decide the approaching degrees
between the corresponding features of these sub-models and six models (from new to
worn). The results can be used as the training inputs of the ANN. The training targets can
be determined like this: the weighted approaching degrees between each model and its
own sub-models should be 1 and weighted approaching degrees between a model and
other model’s sub-models can be calculated by decreasing the value from 1 to zero




linearly. After the training the constructed frame and associated weights of the ANN can
reflect the distinct importance of each individual feature for each model under specific
cutting conditions. So the tool wear classification results can be reliable and accurate. The
determination of the membership functions of all the features for each model and the
construction of ANNSs for classification mark the end of the learning stage.

3.6 Tool wear classification: In the practical tool condition monitoring process, the tool
with unknown wear value is the object and it will be recognized as “new tool”, “normal
tool” or “worn tool”. By using equation (2), the membership functions of all the features
of the object can be determined. As an example, Table 2 lists the coefficients of the
membership function for the frequency components of the cutting force F, under cutting
conditionl*. The flank wear value of this group of inserts is 0.25 mm.

Table 2 Coefficients of the membership function of cutting force F,

Frequency 0~0.2 0.2~ 0.4~ 0.6~ 0.8~ 1.0~ 1.2~ 1.4~ 1.6~ 1.8~
(kHz) 0.4 0.6 0.8 1.0 12 1.4 1.6 1.8 2.0
P 0.561 0.411 0.203 0.088 0.125 0.098 0.079 0.158 0.076 0.035
J
o. 0.025 0.092 0.046 0.029 0.033 0.012 0.024 0.016 0.005 0.006
i

The approaching degrees of the corresponding features of the standard model and the
object to be recognized can be calculated by using equation (3). As an example, Table 3
shows the approaching degrees between part of corresponding features ( 10 frequency
components of the cutting force F, under cutting condition1*) of a group of inserts
(VB=0.25 mm ) and three standard models

Table 3 Part of the approaching degree calculating results

Frequency | 0~0.2 0.2~04 | 0.4~0.6 0.6~0.8 08~1.0 | 1.0~12 | 1.2~14 | 14~16 | 1.6~1.8 | 1.8~2.0
(kHz)
Models
VB=0 (mm) 0 0.21 0 0.57 0.47 0.49 0.16 0 0 0.71
VB=0.2(mm) 0.75 0.86 1 0.79 0.93 1 1 0.66 1 0.86
VB=0.5(mm) | 0 0.26 0.49 0.35 0.57 0.52 0.5 0.32 0.53 0.63

The approaching degrees between the corresponding features of the object and different
models can be the inquiry input of the ANN. One of a pre-trained ANN is then chosen to
calculate the weighted approaching degree between the object and a model under a
specific cutting condition. Finally the tool wear state should be classified to the model
that has the highest weighted approaching degree with the tool being monitored. In a
verifying experiment, fifteen tools with unknown flank wear value were used in milling
operations under cutting condition1*. Fig.6 shows the classification results. It can be seen
that all the tools were classified correctly with the confidence of higher than 80%.
Experiments under other two cutting conditions showed the similar results.
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Fig.6 Tool wear states classification results.

4. Conclusions: A methodology has been developed for on-line tool condition
monitoring in milling using four kinds of transducers and tool wear relevant features are
extracted from the time and frequency domains. Tool wear classification is realized by
applying ANN driven fuzzy pattern recognition algorithm. On the basis of this
investigation, the following conclusions can be made.

(1) Power consumption, vibration, AE and cutting force sensors are applicable for
monitoring tool wear in milling operations. The healthy signals picked up by these
sensors within different working frequency ranges describe tool condition
comprehensively.

(2) Many features extracted from time and frequency domains are found to be strongly
relevant to the changes of tool wear state. This makes accurate and reliable pattern
recognition possible.

(3) The combination of ANN and fuzzy logic technique integrates the strong learning and
classification ability of the former and the superb flexibility of the latter to express the
distribution characteristics of signal features with vague boundaries and the fuzzy
distances between them. This methodology indirectly solves the weight assignment
problem of the conventional fuzzy pattern recognition system and let it have greater
representative power, higher training speed and be more robust.

(4) The ANN driven fuzzy pattern recognition algorithm is effective and suitable for tool
wear monitoring. It can carry out the integration and fusion of multi-sensor information.
Fuzzy approaching degree can measure the similarity between signal features accurately
and the ANN successfully accomplishes the tool wear states classification.

(5). Armed with the advanced pattern recognition methodology, the established
intelligent tool condition monitoring system has the advantages of being suitable for
different machining environments, robust to noise and tolerant to faults. Accurate tool
wear classification can be achieved over a range of machining conditions.

Future work will attempt to identify data processing methods that produce feature vectors
describing tool condition more accurately. The ANN driven fuzzy pattern recognition
technique will be improved by the application of other forms of fuzzy distances,
advanced fuzzy clustering techniques and the optimization of the ANN structure.




* Cutting conditionl: cutting speed - 600 rev/min, feed rate - 1 mm/rev, cutting depth -
0.6 mm, workpiece material - EN1A, cutting inserts - Stellram SDHT1204 AE TN-42.
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